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Abstract
In this paper we show that the hyponormality of block Toeplitz operators T�

with matrix-valued rational symbols � in L∞(Cn×n) is completely determined
by the tangential Hermite–Fejér interpolation problem.
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Mathematics Subject Classification: 47B35, 47B20, 47A57, 46B70

1. Introduction

Toeplitz operators (or equivalently, Wiener–Hopf operators; more generally, block Toeplitz
operators; and particularly, Toeplitz determinants) are of importance in connection with a
variety of problems in physics, and in particular, in the field of quantum mechanics. For
example, a study of solvable models in quantum mechanics uses the spectral theory of Toeplitz
operators (cf [Pr]); the one-dimensional Heisenberg Hamiltonian of ferromagnetism is written
as a direct sum of the sums of Toeplitz operators and multiplicative potentials, so that a study
on the spectral properties of Toeplitz operators is required in understanding this model (cf
[DMA]); a study of quantum spin chains uses Toeplitz determinants (cf [KMN]); a study of
the vicious walkers model uses the Toeplitz and Fredholm theory (cf [HI]); and the theory
of block Toeplitz determinants plays an important role in the study of high-temperature
superconductivity (cf [BE]). On the other hand, the theory of hyponormal operators is an
extensive and highly developed area. In particular, a study of the spectral properties of
hyponormal operators has made important contributions in the study of related mathematical
physics problems. For example, if T is a hyponormal operator then the norm of ‖T n‖ can easily
be computed from the n power of ‖T ‖. Also hyponormal operators enjoy Weyl’s theorem,
which is the statement that if T − λI is a non-invertible Fredholm operator of index zero
then λ is an isolated eigenvalue of finite multiplicity and vice versa. Besides, hyponormal
operators possess many useful spectral properties. Consequently, it is quite informative to
know the hyponormality of (block) Toeplitz operators. In this paper we are concerned with
the hyponormality of block Toeplitz operators with rational symbols.
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A bounded linear operator A on an infinite-dimensional complex Hilbert space H is said
to be hyponormal if its self-commutator [A∗, A] = A∗A−AA∗ is positive (semidefinite). For
ϕ in L∞(T) of the unit circle T = ∂D, the (single) Toeplitz operator with symbol ϕ is the
operator Tϕ on the Hardy space H 2(T) defined by

Tϕf = P(ϕf ) (f ∈ H 2(T)),

where P denotes the orthogonal projection that maps from L2(T) onto H 2(T). The problem
of determining which symbols induce hyponormal Toeplitz operators was completely solved
by Cowen [Co] in 1988.

Cowen’s theorem ([Co], [NT]). For ϕ ∈ L∞, write

E(ϕ) := {k ∈ H∞ : ‖k‖∞ � 1 and ϕ − kϕ ∈ H∞}.
Then Tϕ is hyponormal if and only if E(ϕ)is nonempty.

Cowen’s theorem is to recast the operator-theoretic problem of hyponormality for (single)
Toeplitz operators into the problem of finding a solution to a certain functional equation
involving the operator’s symbol. Tractable and explicit criteria for the hyponormality of
Toeplitz operators Tϕ with scalar trigonometric polynomial or rational symbols ϕ were
established by many authors (cf [Co], [CL], [HL1], [HL2], [NT], etc).

For the matrix-valued function � ∈ L∞(Cn×n), the block Toeplitz operator with symbol
� is the operator T� on the vector-valued Hardy space H 2(Cn) of the unit disc defined by

T�h = Pn(�h) (h ∈ H 2(Cn)),

where Pn denotes the orthogonal projection that maps L2(Cn) onto H 2(Cn). If we set
H 2(Cn) = H 2(T) ⊕ · · · ⊕ H 2(T) then we see that if

� =

⎡
⎢⎣

ϕ11 . . . ϕ1n

...

ϕn1 . . . ϕnn

⎤
⎥⎦

then

T� =

⎡
⎢⎣

Tϕ11 . . . Tϕ1n

...

Tϕn1 . . . Tϕnn

⎤
⎥⎦ .

Very recently, Gu, Hendricks and Rutherford [GHR] considered the hyponormality of
block Toeplitz operators and characterized the hyponormality of block Toeplitz operators in
terms of their symbols. In particular, they showed that the hyponormality of the block Toeplitz
operator T� will force � to be normal, that is, �∗� = ��∗. Their characterization for
hyponormality of block Toeplitz operators resembles the Cowen theorem with an additional
condition—the normality condition of the symbol.

Theorem 1.1 [GHR]. For � ∈ L∞(Cn×n), T� is hyponormal if and only if � is normal and

E(�) := {K ∈ H∞(Cn×n) : ‖K‖∞ � 1 and � − K�∗ ∈ H∞(Cn×n)}
is nonempty.

However the case of arbitrary matrix symbol � ∈ L∞(Cn×n), though solved by
theorem 1.1, is in practice very difficult because the matrix multiplication is not commutative.
In [GHR] it was shown that, as in the scalar case, if �(z) is a trigonometric matrix polynomial
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with invertible leading coefficient then the hyponormality of T� can be determined by a
matrix-valued Caratheodory interpolation problem.

On the other hand, a function ϕ ∈ L∞ is said to be of bounded type (or in the Nevanlinna
class) if there are functions ψ1, ψ2 in H∞(D) such that

ϕ(z) = ψ1(z)

ψ2(z)

for almost all z in T. Rational functions in L∞ are of bounded type. For a matrix-valued
function � = [φij ] ∈ L∞(Cn×n), we say that � is of bounded type if each entry φij is of
bounded type.

For � ∈ L∞(Cn×n) write

�+ := P(�) ∈ H 2(Cn×n) and �− := [
(I − P)(�)

]∗ ∈ H 2(Cn×n),

where P denotes the orthogonal projection from L2(Cn×n) to H 2(Cn×n). Thus we can write
� = �∗

− + �+. For F = [fij ] ∈ H∞(Cn×n), we say that F is called rational if each entry fij

is a rational function. Also if given � ∈ L∞(Cn×n),�+ and �− are rational then we say that
the block Toeplitz operator T� has a rational symbol �.

In this paper we show that if � ∈ L∞(Cn×n) is a rational symbol then the hyponormality
of the block Toeplitz operator T� can be determined by the matrix-valued tangential Hermite–
Fejér interpolation problem. We here formulate the (matrix-valued) tangential Hermite–Fejér
interpolation problem (cf [FF]).

Problem 1.2. Let {Aij : 1 � i � N and 0 � j < pi} and {Bij : 1 � i � N and 0 � j < pi}
be a set of n × n complex matrices, respectively and let α1, α2, . . . , αN be N distinct complex
numbers in D. Find necessary and sufficient conditions for the existence of a contractive
analytic function K in H∞(Cn×n) satisfying that for each i = 1, 2, . . . , N ,⎡

⎢⎢⎢⎣
Bi,0

Bi,1

...

Bi,pi−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

K(αi) 0 · · · 0
K(1)(αi )

1 K(αi) · · · 0
...

...
...

...
K(pi−1)(αi )

(pi−1)!
K(pi−2)(αi )

(pi−2)! · · · K(αi)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ai,0

Ai,1

...

Ai,pi−1

⎤
⎥⎥⎥⎦ .

2. The main result

We begin with an observation that if f ∈ H 2 is such that f is of bounded type, say f = ψ2/ψ1

(ψ1, ψ2 ∈ H∞) then dividing the outer part of ψ1 into ψ2 one obtains f = b/θ , where θ is
inner and b ∈ H∞ satisfies that the inner parts of b and θ are coprime. Thus f = θb. If we
write, for an inner function θ ,

H(θ) := H 2 � θH 2,

then since f ∈ H 2, we must have b ∈ H(zθ). Thus if f ∈ H 2 is such that f is of bounded
type and f (0) = 0 then we can write (cf [Ab])

f = θb, (2.1)

where θ is an inner function and b ∈ H(θ) satisfies that the inner parts of b and θ are coprime.
In particular, if f ∈ H∞ is a rational function then f can be written as (cf [HL2])

f = θb, (2.2)

where θ is a finite Blaschke product and b ∈ H∞ satisfies that the inner parts of b and θ are
coprime.
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Now suppose F = [fij ] ∈ H∞(Cn×n) is rational. Then in view of (2.2) we may write
fij = θij bij , where θij is a finite Blaschke product, bij is in H∞(Cn×n), and θij and the inner
part of bij are coprime. Thus we can write

F(z) = [fij ] = [θij bij ] = [θaij ] = 	(z)A∗(z) (	 = θIn), (2.3)

where θ := LCM(θij ), A(z) ∈ H∞(Cn×n) and In is the n × n identity matrix. Note that
for each zero α of θ , the matrix A(α) is nonzero. In the following, when we consider the
matrix-valued rational function F ∈ H∞(Cn×n), we will assume, without loss of generality,
that F is of form (2.3).

We then have

Lemma 2.1. Suppose � ≡ �∗
− + �+ ∈ L∞(Cn×n) is a rational symbol of the form

�+ = [θ1aij ] = 	1(z)A
∗(z) and �− = [θ2bij ] = 	2(z)B

∗(z),

where 	i = θiIn (i = 1, 2) and the θi are finite Blaschke products. If T� is hyponormal then
	2 divides 	1.

Proof. Let � be a rational symbol such that T� is hyponormal. By theorem 1.1
there exists a matrix-valued function K(z) ∈ H∞(Cn×n) with ‖K‖∞ � 1 such that
�∗

− − K�∗
+ ∈ H∞(Cn×n). Observe that

�∗
− − K�∗

+ ∈ H∞(Cn×n)

⇐⇒ B(z)	∗
2(z) − K(z)A(z)	∗

1(z) = F(z) for some F(z) ∈ H∞(Cn×n)

⇐⇒ B(z)	1(z) − K(z)A(z)	2(z) = F(z)	1(z)	2(z).

Therefore for each zero α of θ2, B(α)	1(α) = 0. Since B(α) is nonzero for each zero α of θ2

it follows that 	1(α) = 0 and hence 	1(z) = 	2(z)	0(z) for some finite Blaschke product
	0. �

We now have

Theorem 2.2. If � ∈ L∞(Cn×n) is a normal rational symbol then T� is hyponormal if and
only if there exists a solution to the tangential Hermite–Fejér interpolation problem 1.2, where
the data are given by the symbol �.

Proof. First observe that, in view of lemma 2.1, when we study the hyponormality
of block Toeplitz operators with rational symbols � we may assume that the symbol
� ≡ �∗

− + �+ ∈ L∞(Cn×n) is of the form

�+ = [θ1θ2aij ] = 	1	2A
∗(z) and �− = [θ1bij ] = 	1B

∗(z) (	i := θiIn for i = 1, 2),

where θ1 and θ2 are finite Blaschke products of degrees d1 and d2, respectively. Write

θ1θ2 =
N∏

i=1

(
z − αi

1 − αiz

)pi

and θ1 =
N1∏
i=1

(
z − αi

1 − αiz

)pi

,

where d1 = ∑N1
i=1 pi and d2 = ∑N

i=N1+1 pi . Write

C(�) ≡ {K ∈ H∞(Cn×n) : �(z) − K(z)�∗(z) ∈ H∞(Cn×n)}.
Observe that

K(z) ∈ C(�)

⇐⇒ 	∗
1(z)B(z) − 	∗

2(z)	
∗
1(z)K(z)A(z) = F(z) for some F(z) ∈ H∞(Cn×n)

⇐⇒ 	2(z)B(z) − K(z)A(z) = 	1(z)	2(z)F (z). (2.4)
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Put

Ai,j := A(j)(αi)

j !
and Bi,j := (	2B)(j)(αi)

j !
(1 � i � N, 0 � j < pi).

Then the last equation of (2.4) holds if and only if the following equations hold: for each
i = 1, . . . , N , ⎡

⎢⎢⎢⎣
Bi,0

Bi,1

...

Bi,pi−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

K(αi) 0 · · · 0
K(1)(αi )

1 K(αi) · · · 0
...

...
...

...
K(pi−1)(αi )

(pi−1)!
K(pi−2)(αi )

(pi−2)! · · · K(αi)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ai,0

Ai,1

...

Ai,pi−1

⎤
⎥⎥⎥⎦ . (2.5)

Thus K is in C(�) if and only if K is a function in H∞(Cn×n) satisfying (2.5). If in addition
‖K‖∞ � 1 is required then this is exactly the tangential Hermite–Fejér interpolation problem.
Consequently, T� is hyponormal if and only if the tangential Hermite–Fejér interpolation
problem is solvable. This completes the proof. �

To obtain a concrete solution of theorem 2.2, we recall the solution of the tangential
Hermite–Fejér interpolation problem (cf [FF]). Put

Âi =

⎡
⎢⎢⎢⎣

Ai,0 0 · · · 0
Ai,1 Ai,0 · · · 0
...

... 0
Ai,pi−1 Ai,pi−2 · · · Ai,0

⎤
⎥⎥⎥⎦ and B̂i =

⎡
⎢⎢⎢⎣

Bi,0 0 · · · 0
Bi,1 Bi,0 · · · 0
...

... 0
Bi,pi−1 Bi,pi−2 · · · Bi,0

⎤
⎥⎥⎥⎦

(i = 1, . . . , N).

Let Â and B̂ be the matrices on l2
d(C

N) defined by

Â := diag[Â1, Â2, . . . , ÂN ] and B̂ := diag[B̂1, B̂2, . . . , B̂N ].

Note that B̂i = 0 for i = N1 + 1, . . . , N0. Put

x
j

i := zj

(1 − αiz)j+1
(1 � i � n, 0 � j < pi)

and define

G :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
x

p1−1
1 , x

p1−1
1

〉
I · · · 〈

x
p1−1
1 , x0

1

〉
I

〈
x

p1−1
1 , x

p2−1
2

〉
I · · · 〈

x
p1−1
1 , x0

2

〉
I · · · 〈

x
p1−1
1 , x0

n

〉
I

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·〈
x0

n, x
p1−1
1

〉
I · · · 〈

x0
n, x

0
1

〉
I

〈
x0

n, x
p2−1
2

〉
I · · · 〈

x0
n, x

0
2

〉
I · · · 〈

x0
n, x

0
n

〉
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that

〈
x

j

i , xr
k

〉 = x
j

i

(r)
(αk)

r!
.

Recall [[FF], theorem 4.3] that there exists a solution to the tangential Hermite–Fejér
interpolation problem (2.5) if and only if Â∗GÂ − B̂∗GB̂ is positive semidefinite.

As a consequence of the above argument we get
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Corollary 2.3. Let � ≡ �∗
− + �+ ∈ L∞(Cn×n) be a normal rational symbol of the form

�+ = 	1	2A
∗(z) and �− = 	1B

∗(z) (	i := θiIn for i = 1, 2),

where θ1 and θ2 are finite Blaschke products. Then

T� is hyponormal ⇐⇒ Â∗GÂ − B̂∗GB̂ � 0.

We conclude with a revealing example.

Example 2.4. Let b(z) = z− 1
2

1− 1
2 z

and let

T� ≡
[
T ∗

b + αTb Tz

T ∗
z T ∗

b + αTb

]
(α ∈ R).

Then T� is hyponormal if and only if α = 1.

Proof. We use the criterion of corollary 2.3. Observe that

� =
[
b(z) + αb(z) z

z b(z) + αb(z)

]
.

Thus � is a normal rational symbol. We also have

�+ = zb(z)

[
αz 0
b(z) αz

]∗
and �− = zb(z)

[
z 0

b(z) z

]∗
,

and hence

Â1,0 = A(α1) = A(0) =
[

0 0
− 1

2 0

]
, Â2,0 = A(α2) = A

(
1

2

)
=

[ 1
2α 0
0 1

2α

]
,

B̂1,0 = B(α1) = B(0) =
[

0 0
− 1

2 0

]
, and B̂2,0 = B(α2) = B

(
1

2

)
=

[ 1
2 0
0 1

2

]
.

We thus have

Â =

⎡
⎢⎢⎣

0 0 0 0
− 1

2 0 0 0
0 0 1

2α 0
0 0 0 1

2α

⎤
⎥⎥⎦ , B̂ =

⎡
⎢⎢⎣

0 0 0 0
− 1

2 0 0 0
0 0 1

2 0
0 0 0 1

2

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 4

3 0
0 1 0 4

3

⎤
⎥⎥⎦ ,

and

Â∗GÂ − B̂∗GB̂ =

⎡
⎢⎢⎣

0 0 0 1
4α + 1

4
0 0 0 0
0 0 1

3α2 − 1
3 0

− 1
4α + 1

4 0 0 1
3α2 − 1

3

⎤
⎥⎥⎦ .

A straightforward calculation shows that Â∗GÂ − B̂∗GB̂ is positive if and only if α = 1. �
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[DMA] Damak M, Măntoiu M and Aldecoa R T de 2006 Toeplitz algebras and spectral results for the one-dimensional

Heisenberg model J. Math. Phys. 47 082107, p 10
[FF] Foias C and Frazo A 1993 The commutant lifting approach to interpolation problems Operator Theory: Adv.

Appl. vol 44 (Boston, MA: Birkhauser)
[GHR] Gu C, Hendricks J and Rutherford D 2006 Hyponormality of block Toeplitz operators Pac. J. Math. 223

95–111
[HI] Hikami K and Imamura T 2003 Vicious walkers and hook Young tableaux. Random matrix theory J. Phys.

A: Math. Gen. 36 3033–48
[HL1] Hwang I S and Lee W Y 2006 Hyponormality of Toeplitz operators with rational symbols Math. Ann. 335

405–14
[HL2] Hwang I S and Lee W Y 2006 Hyponormal Toeplitz operators with rational symbols J. Operator Theory 56

47–58
[KMN] Keating J P, Mezzadri F and Novaes M 2006 A new correlator in quantum spin chains J. Phys. A: Math.

Gen. 39 L389–94
[NT] Nakazi T and Takahashi K 1993 Hyponormal Toeplitz operators and extremal problems of Hardy spaces

Trans. Am. Math. Soc. 338 753–69
[Pr] de Prunele E 2003 Conditions for bound states in a periodic linear chain and the spectra of a class of Toeplitz

operators in terms of polylogarithm functions J. Phys. A: Math. Gen. 36 8797–815

7

http://dx.doi.org/10.1215/S0012-7094-76-04348-9
http://dx.doi.org/10.1007/s00220-007-0276-5
http://dx.doi.org/10.2307/2046858
http://dx.doi.org/10.1063/1.2222083
http://dx.doi.org/10.1088/0305-4470/36/12/311
http://dx.doi.org/10.1088/0305-4470/39/24/L01
http://dx.doi.org/10.2307/2154427

	1. Introduction
	2. The main result
	Acknowledgments
	References

